Semi-discretization of Stochastic Partial Differential Equations on R by a Finite-difference Method

نویسنده

  • HYEK YOO
چکیده

The paper concerns finite-difference scheme for the approximation of partial differential equations in R1, with additional stochastic noise. By replacing the space derivatives in the original stochastic partial differential equation (SPDE, for short) with difference quotients, we obtain a system of stochastic ordinary differential equations. We study the difference between the solution of the original SPDE and the solution to the corresponding equation obtained by discretizing the space variable. The need to approximate the solution in R1 with functions of compact support requires us to introduce a scale of weighted Sobolev spaces. Employing the weighted Lp-theory of SPDE, a sup-norm error estimate is derived and the rate of convergence is given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

Semi-discretization of stochastic partial differential equations on R1 by a finite-difference method

The paper concerns finite-difference scheme for the approximation of partial differential equations in R1, with additional stochastic noise. By replacing the space derivatives in the original stochastic partial differential equation (SPDE, for short) with difference quotients, we obtain a system of stochastic ordinary differential equations. We study the difference between the solution of the o...

متن کامل

APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES

We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.

متن کامل

European and American put valuation via a high-order semi-discretization scheme

Put options are commonly used in the stock market to protect against the decline of the price of a stock below a specified price. On the other hand, finite difference approach is a well-known and well-resulted numerical scheme for financial differential equations. As such in this work, a new spatial discretization based on finite difference semi-discretization procedure with high order of accur...

متن کامل

Finite difference method for solving partial integro-differential equations

In this paper, we have introduced a new method for solving a class of the partial integro-differential equation with the singular kernel by using the finite difference method. First, we employing an algorithm for solving the problem based on the Crank-Nicholson scheme with given conditions. Furthermore, we discrete the singular integral for solving of the problem. Also, the numerical results ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000